Tenet: A Flexible Framework for
Machine-Learning-based Vulnerability Detection

Eduard Pinconschi Sofia Reis Chi Zhang
FEUP, University of Porto, INESC-ID, IST, University of Portugal, Carnegie Mellon University,
Portugal Portugal USA
Rui Abreu Hakan Erdogmus Corina S. Pasdreanu Limin Jia
FEUP, University of Porto, Carnegie Mellon University, Carnegie Mellon University, — Carnegie Mellon University,
Portugal USA USA USA

Abstract—Software vulnerability detection (SVD) aims to iden-
tify potential security weaknesses in software. SVD systems
have been rapidly evolving from those being based on testing,
static analysis, and dynamic analysis to those based on machine
learning (ML). Many ML-based approaches have been proposed,
but challenges remain: training and testing datasets contain
duplicates, and building customized end-to-end pipelines for SVD
is time-consuming. We present Tenet, a modular framework
for building end-to-end, customizable, reusable, and automated
pipelines through a plugin-based architecture that supports SVD
for several deep learning (DL) and basic ML models. We
demonstrate the applicability of Tenet by building practical
pipelines performing SVD on real-world vulnerabilities.

I. INTRODUCTION

Software vulnerability detection (SVD) approaches iden-
tify potential security weaknesses in software [1l], [2]. Over
the past years, SVD techniques evolved from traditional
approaches, such as testing, static analysis, and dynamic
analysis, to machine learning (ML), which promises to enable
faster analysis with increased precision earlier in the software
development life-cycle (i.e., “shift-left security”).

Current ML-based approaches combine a multitude of code
embeddings and network topologies [3]. They address various
research problems in SVD, including methods, features, and
datasets [4]. However, many challenges remain. First, the train-
ing and testing data often contain duplicates (up to 68%)—due
to poor cleansing and sampling techniques—which artificially
inflates detection performance (3, [6]. Second, there is a lack
of effective, openly available, and automated MLOps pipelines
to produce flexible ML systems [7]. ML-based systems should
become end-to-end tools capable of analyzing a diversity of
projects with respect to applicable platforms, programming
languages, and software domains [3].

To address these challenges, we propose Tenet, a modular
framework for building end-to-end, customized, reusable, and
automated pipelines for SVD. Tenet provides accessible
implementations and supports reproducible evaluation of sev-
eral SVD approaches. It also allows automatic construction
of vulnerability datasets. Tenet makes building new SVD
systems practical as it can easily combine real-world data
with state-of-the-art SVD and ML-based models. We achieve
that with a plug-and-play architecture with a set of core
components and plugins for data collection, pre-processing,

learning, analysis, and evaluation. Tenet is available at
https://github.com/TQRG/tenet.

II. TENET DESCRIPTION

A. Tenet components

Figure [I] depicts the various components of Tenet, which
can be organized into different pipelines to generate ML-based
SVD systems. The components are: (1) data collector to
gather software vulnerabilities source code from vulnerability
metadata (e.g., references to commits) listed in NVD [8] and
OSV [9] databases; (2) data labeler to label code fragments
as safe and unsafe using diff analysis (DA), i.e., based on
code changes between vulnerable and safe (fixed) versions
of a code fragment, or static analysis (SA) information; (3)
granularity adjuster to capture the desired context or scope
around a vulnerability’s location; (4) code mutator to extend
the set of unsafe samples with code changes using variable
and function name randomization to balance the normally
highly-imbalanced training datasets [3]); (5) representation
extractor to gather different representations such as context-
paths, functions and lines of code; (6) data pre-processor
and sampler to clean duplicate samples and generate stratified
datasets; (7) model generator to train the model from the
data collected; and (8) statistics generator to collect different
metrics and plot class separability charts. Tenet currently
supports multiple models, including powerful state-of-the-art
code models such as code2vec [[10] and CodeBERT [11]]. Other
models can be easily integrated as well.

B. Implementation

Tenet follows a plug-and-play architecture with a CDD
(Configuration-Driven Development) strategy to assemble a
set of components (implemented as plugins) into a pipeline
through a configuration file written in YAML. A plugin is
a Python script extending a generic handler of Tenet with
specific functionalities. A plugin example to scrape files from
GitHub is shown here: https://t.ly/gpiU. An example config-
uration file that specifies a pipeline (https://t.ly/S2hE) and a
tutorial (https://t.ly/_11m) are available at our GitHub repo.

https://github.com/TQRG/tenet
https://t.ly/gpiU
https://t.ly/S2hE
https://t.ly/_l1m

ML Software Vulnerability Detection Pipeline built using TENET

Data Collection @)

Diff Analysis

codebases

' unsafe ' (sata)]

NVD OSV

Scrape Vulnerability
Metadata

labels
file_vul,240,5,240,20,unsafe
file_vul,241,10,241,30,unsafe
file_fix,240,5,240,20,safc

Data Labelling e

Static Analysis

5 COdeQL bes
o file_vul,241,10,241,30,unsafe

Examples of pipelines

! Training Pipeline - LOC Granularity 1

Get function boundaries (jscodeshift) e
adjust line level to function level

Code Mutations (jscodeshift + JetBrains CLI) (/«ﬁ

Function
| Bounds 1

(*) supported models
GraphCodeBERT

CodeBERT

v

Fig. 1. Tenet architecture with two short pipeline examples. The first pipeline uses lines of code as the granularity of a vulnerability and labels the samples
using static analysis with CodeQL. The second pipeline uses functions as the granularity of a vulnerability and generates labels using diff analysis.

C. Tenet Usage

To illustrate the flexibility, re-usability, and robustness of
Tenet, we present two different pipelines to produce different
SVD models for JavaScript (JS) vulnerability detection: PL1,
which uses diff analysis to label data for multiple types of
vulnerabilities and produces five SVD systems with distinct
network topologies (Table [[); and, PL2, which produces two
SVD systems with similar network topology (CodeBERT) but
fine-tuned for different JS vulnerabilities types (Table [II)). The
dataset used as input for PL2 was generated and labeled with
an external pipeline which shows how one can produce a
dataset independently and plug it into our pipeline. We tested
the pipelines by deploying them on different platforms: (1)
Debian Linux 5.10 (40 cores, 64Gb, Intel(R) Xeon(R) Silver
4210R CPU @ 2.40GHz); (2) Standard NC24 (24 cores, 224
GB RAM, 1440 GB disk) with a GPU-4xNVIDIA Tesla K80
on Microsoft Azure. This demonstrates Tenet’s robustness
with respect to different deployment scenarios.

TABLE I
PL1 RESULTS: FIVE DIFFERENT MODELS TRAINED WITH LABELS
PRODUCED WITH DA FOR MULTIPLE JS VULNERABILITY TYPES

pipeline. In PL2, we used CodeBERT as the model, and
different data preparation and collection components that rely
on static analysis for Path Injection and DOM XSS for ground
truth, giving rise to an entirely different pipeline.

IIT. CONCLUSION

We presented Tenet, a component-based framework for
building cross-platform ML- and DL-based pipelines for SVD.
The framework targets SVD researchers and practitioners.
It currently has 2 data sources, 6 handlers, and 16 plugins
that enable a broad combination of pipelines. Furthermore,
the plugin-based approach facilitates extensions with more
sophisticated models and code representations. Experiments
showed that the framework promotes re-usability by executing
pipeline variations on two different platforms. We plan to
improve the labeling process with human feedback and build
a monitoring component [7].

REFERENCES

[1] S. M. Ghaffarian and H. R. Shahriari, “Software vulnerability analysis
and discovery using machine-learning and data-mining techniques: A
survey,” ACMSUR, 2018.

[2] Y. Nong, R. Sharma, A. Hamou-Lhadj, X. Luo, and H. Cai, “Open

Model Acc. | Prec. | Recall F1 Training Time
ADA 0.938 | 0.071 0.019 | 0.031 7.77s
KNN 0.950 0.0 0.0 0.0 47.27s
svC 0.950 0.0 0.0 0.0 11.64s
RFC 0.949 0.0 0.0 0.0 38.05s

code2vec | 0.960 | 0.727 0.314 0.438 1m:8s
TABLE II

PL2 RESULTS: TWO CODEBERT MODELS TRAINED WITH LABELS
PRODUCED BY SA FOR TWO JS VULNERABILITIES TYPES

[3]
[4]

[5]
[6]

[7]

Dataset Acc. | Prec. | Recall F1 Training time
Path injection | 0.991 | 0.375 1 0.546 1h:25m
DOM XSS 0.988 | 0.667 | 0.4375 | 0.5284 9h:28m

[8]

Tables [I] and [[] show the performance results for different

[9]
[10]

science in software engineering: A study on deep learning-based vul-
nerability detection,” TSE, pp. 1-22, 2022.

T. Sonnekalb, T. S. Heinze, and P. Méder, “Deep security analysis of
program code,” EMSE, 2021.

H. Hanif, M. H. Nasir, M. F. Razak, A. Firdaus, and N. B. Anuar,
“The rise of software vulnerability: Taxonomy of software vulnerabilities
detection and machine learning approaches,” JNCA, 2021.

S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning based
vulnerability detection: Are we there yet?” IEEE TSE, 2020.

R. Croft, M. A. Babar, and M. Kholoosi, “Data quality for software
vulnerability datasets,” in ICSE, 2023.

B. M. A. Matsui and D. H. Goya, “Mlops: Five steps to guide its
effective implementation,” in CAIN, 2022, pp. 33-34.

“National vulnerability database,” https://nvd.nist.gov/, 2022.

Google, “Open Source Vulnerability Database,” https://osv.dev/, 2022.
U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: learning
distributed representations of code,” POPL, 2019.

models trained on different datasets. In PL1, we plugged in
standard machine learning models (ADA, KNN, SVC, RFC)
and a specialized model (code2vec), which re-used the same

[11] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model for

programming and natural languages,” EMNLP, 2020.

https://nvd.nist.gov/
https://osv.dev/

	Introduction
	Tenet Description
	Tenet components
	Implementation
	Tenet Usage

	Conclusion
	References

