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Abstract—Software vulnerability detection (SVD) aims to iden-
tify potential security weaknesses in software. SVD systems
have been rapidly evolving from those being based on testing,
static analysis, and dynamic analysis to those based on machine
learning (ML). Many ML-based approaches have been proposed,
but challenges remain: training and testing datasets contain
duplicates, and building customized end-to-end pipelines for SVD
is time-consuming. We present Tenet, a modular framework
for building end-to-end, customizable, reusable, and automated
pipelines through a plugin-based architecture that supports SVD
for several deep learning (DL) and basic ML models. We
demonstrate the applicability of Tenet by building practical
pipelines performing SVD on real-world vulnerabilities.

I. INTRODUCTION

Software vulnerability detection (SVD) approaches iden-
tify potential security weaknesses in software [1l], [2]. Over
the past years, SVD techniques evolved from traditional
approaches, such as testing, static analysis, and dynamic
analysis, to machine learning (ML), which promises to enable
faster analysis with increased precision earlier in the software
development life-cycle (i.e., “shift-left security”).

Current ML-based approaches combine a multitude of code
embeddings and network topologies [3]. They address various
research problems in SVD, including methods, features, and
datasets [4]. However, many challenges remain. First, the train-
ing and testing data often contain duplicates (up to 68%)—due
to poor cleansing and sampling techniques—which artificially
inflates detection performance (3, [6]. Second, there is a lack
of effective, openly available, and automated MLOps pipelines
to produce flexible ML systems [7]. ML-based systems should
become end-to-end tools capable of analyzing a diversity of
projects with respect to applicable platforms, programming
languages, and software domains [3].

To address these challenges, we propose Tenet, a modular
framework for building end-to-end, customized, reusable, and
automated pipelines for SVD. Tenet provides accessible
implementations and supports reproducible evaluation of sev-
eral SVD approaches. It also allows automatic construction
of vulnerability datasets. Tenet makes building new SVD
systems practical as it can easily combine real-world data
with state-of-the-art SVD and ML-based models. We achieve
that with a plug-and-play architecture with a set of core
components and plugins for data collection, pre-processing,

learning, analysis, and evaluation. Tenet is available at
https://github.com/TQRG/tenet.

II. TENET DESCRIPTION

A. Tenet components

Figure [I] depicts the various components of Tenet, which
can be organized into different pipelines to generate ML-based
SVD systems. The components are: (1) data collector to
gather software vulnerabilities source code from vulnerability
metadata (e.g., references to commits) listed in NVD [8] and
OSV [9] databases; (2) data labeler to label code fragments
as safe and unsafe using diff analysis (DA), i.e., based on
code changes between vulnerable and safe (fixed) versions
of a code fragment, or static analysis (SA) information; (3)
granularity adjuster to capture the desired context or scope
around a vulnerability’s location; (4) code mutator to extend
the set of unsafe samples with code changes using variable
and function name randomization to balance the normally
highly-imbalanced training datasets [3]); (5) representation
extractor to gather different representations such as context-
paths, functions and lines of code; (6) data pre-processor
and sampler to clean duplicate samples and generate stratified
datasets; (7) model generator to train the model from the
data collected; and (8) statistics generator to collect different
metrics and plot class separability charts. Tenet currently
supports multiple models, including powerful state-of-the-art
code models such as code2vec [[10] and CodeBERT [11]]. Other
models can be easily integrated as well.

B. Implementation

Tenet follows a plug-and-play architecture with a CDD
(Configuration-Driven Development) strategy to assemble a
set of components (implemented as plugins) into a pipeline
through a configuration file written in YAML. A plugin is
a Python script extending a generic handler of Tenet with
specific functionalities. A plugin example to scrape files from
GitHub is shown here: https://t.ly/gpiU. An example config-
uration file that specifies a pipeline (https://t.ly/S2hE) and a
tutorial (https://t.ly/_11m) are available at our GitHub repo.


https://github.com/TQRG/tenet
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Fig. 1. Tenet architecture with two short pipeline examples. The first pipeline uses lines of code as the granularity of a vulnerability and labels the samples
using static analysis with CodeQL. The second pipeline uses functions as the granularity of a vulnerability and generates labels using diff analysis.

C. Tenet Usage

To illustrate the flexibility, re-usability, and robustness of
Tenet, we present two different pipelines to produce different
SVD models for JavaScript (JS) vulnerability detection: PL1,
which uses diff analysis to label data for multiple types of
vulnerabilities and produces five SVD systems with distinct
network topologies (Table [[); and, PL2, which produces two
SVD systems with similar network topology (CodeBERT) but
fine-tuned for different JS vulnerabilities types (Table [II)). The
dataset used as input for PL2 was generated and labeled with
an external pipeline which shows how one can produce a
dataset independently and plug it into our pipeline. We tested
the pipelines by deploying them on different platforms: (1)
Debian Linux 5.10 (40 cores, 64Gb, Intel(R) Xeon(R) Silver
4210R CPU @ 2.40GHz); (2) Standard NC24 (24 cores, 224
GB RAM, 1440 GB disk) with a GPU-4xNVIDIA Tesla K80
on Microsoft Azure. This demonstrates Tenet’s robustness
with respect to different deployment scenarios.

TABLE I
PL1 RESULTS: FIVE DIFFERENT MODELS TRAINED WITH LABELS
PRODUCED WITH DA FOR MULTIPLE JS VULNERABILITY TYPES

pipeline. In PL2, we used CodeBERT as the model, and
different data preparation and collection components that rely
on static analysis for Path Injection and DOM XSS for ground
truth, giving rise to an entirely different pipeline.

IIT. CONCLUSION

We presented Tenet, a component-based framework for
building cross-platform ML- and DL-based pipelines for SVD.
The framework targets SVD researchers and practitioners.
It currently has 2 data sources, 6 handlers, and 16 plugins
that enable a broad combination of pipelines. Furthermore,
the plugin-based approach facilitates extensions with more
sophisticated models and code representations. Experiments
showed that the framework promotes re-usability by executing
pipeline variations on two different platforms. We plan to
improve the labeling process with human feedback and build
a monitoring component [7].
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